NASA advancing global navigation satellite system capabilities by Danny Baird for SCaN News Cleveland OH (SPX) Jan 15, 2021
NASA is developing capabilities that will allow missions at high altitudes to take advantage of signals from Global Navigation Satellite System (GNSS) constellations - like GPS commonly used in the U.S. These signals - used on Earth for navigation and critical timing applications - could provide NASA's Artemis missions to the Moon with reliable timing and navigation data. NASA's Space Communications and Navigation (SCaN) program is developing the technologies that will support this goal. Interoperability of the GNSS constellations will be key to realizing this ambition. There are six GNSS constellations that provide Position, Navigation, and Timing (PNT) services, each hailing from different countries worldwide. Four constellations, those operated by the U.S., the European Union, Russia, and China, provide global coverage. The other two, operated by India and Japan, provide regional coverage. Using multiple constellations at once offers more signal availability, which can mean improved accuracy in navigation and timing for satellites. This could be especially helpful for spacecraft at higher altitudes where GNSS signals are less plentiful overall. However, each constellation has unique designs. This poses a challenge to engineers hoping to develop multi-GNSS systems that take advantage of multiple constellations.
Bobcat-1 Bobcat-1 was selected by the CubeSat Launch Initiative in 2018 to study GNSS signals from 250 miles overhead. The small satellite launched to the International Space Station aboard a Northrop Grumman Cygnus spacecraft on Oct. 2, 2020. On Nov. 5, the space station released the CubeSat to begin its mission. The spacecraft will orbit for about nine months, measuring signals from different GNSS constellations. Engineers will use these measurements to better understand GNSS performance, specifically focusing on timekeeping variations between the constellations. "GNSS users at high altitudes see fewer satellites. Time offsets between the constellations can be measured by the CubeSat and provided to these users to improve their positioning performance," said Bobcat Co-Principal Investigator Frank Van Grass of Ohio University.
The SCaN Testbed The SCaN TestBed also laid the foundation for the Lunar GNSS Receiver Experiment (LuGRE), a Commercial Lunar Payload Services payload being developed in partnership with the Italian Space Agency. The payload will receive signals from both GPS and Galileo and is expected to obtain the first-ever GNSS fix on the lunar surface.
GNSS PNT Policy and Advocacy NASA recently worked to publish GPS antenna patterns from GPS satellites that launched between 1997 and 2000, collaborating with the U.S. Space Force, the U.S. Coast Guard, and Lockheed Martin, who built the satellites. The PNT team is also working to facilitate publication of antenna patterns for more recent GPS satellites. With this data, mission planners can better assess the performance of GNSS in high-Earth orbit and lunar space. This forthrightness also encourages other GNSS providers to be similarly transparent. "GNSS capabilities continue to revolutionize the ways spacecraft navigate in near-Earth space and beyond," said NASA navigation engineer Joel Parker. "NASA's longstanding relationships with the GNSS providers have advanced these capabilities to new heights and support the Artemis missions on and around the Moon."
China sees booming satellite navigation, positioning industry Beijing (XNA) Dec 10, 2020 China's satellite navigation and positioning industry gained a total output value of 345 billion yuan (about 52.8 billion U.S. dollars) in 2019, according to the latest report. The sector's output value is expected to hit 400 billion yuan in 2020, according to the report released by the China Satellite Navigation Office on the construction and development of the BeiDou Navigation Satellite System (BDS). Over the past decade, China has seen the total output of its satellite navigation and pos ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |