More than 400 atomic clocks around the globe ensure that mobile phones, computers, and GPS devices deliver accurate time and location data. Whether mechanical, atomic, or those embedded in smartwatches, every clock depends on an oscillator to produce a steady frequency and a counter to tally its cycles. In atomic clocks, the measured oscillations stem from atoms transitioning between two precise energy states.
Conventional atomic clocks typically employ microwave frequencies to stimulate these atomic oscillations. In recent years, scientists have explored the use of lasers to induce optical oscillations. Much like a finely marked ruler, optical atomic clocks can divide a second into exceedingly small intervals, yielding time and position measurements that are thousands of times more precise.
Prof. Minghao Qi from Purdue University, co-author of a study recently published in Nature Photonics, says, "Today's atomic clocks enable GPS systems with a positional accuracy of a few meters. With an optical atomic clock, you may achieve a precision of just a few centimeters. This improves the autonomy of vehicles, and all electronic systems based on positioning. An optical atomic clock can also detect minimal changes in latitude on the Earth's surface and can be used for monitoring, for example, volcanic activity."
Despite their superior accuracy, today's optical atomic clocks remain bulky and depend on intricate laboratory setups with specialized laser configurations and optical components, limiting their use in satellites, remote research stations, or drones. The new development by Purdue University and Chalmers University of Technology overcomes these limitations by substantially miniaturizing the clock system.
Minghao Qi explains, "This allows one of the comb frequencies to be locked to a laser frequency that is in turn locked to the atomic clock oscillation," emphasizing the crucial role of microcombs in synchronizing the system.
Although optical atomic clocks operate at oscillation frequencies in the hundreds of THz-a range far beyond the direct counting capabilities of electronic circuits-the researchers' microcomb chips effectively bridge this gap, allowing the overall system to be significantly downsized.
This advancement paves the way for the mass production of optical atomic clocks, potentially making them more affordable and widely accessible for diverse scientific and commercial applications. Although the complete system requires additional elements-such as modulators, detectors, and optical amplifiers-this study lays the groundwork for integrating all necessary components onto a single chip.
Victor Torres Company expresses optimism about the future, stating, "We hope that future advances in materials and manufacturing techniques can further streamline the technology, bringing us closer to a world where ultra-precise timekeeping is a standard feature in our mobile phones and computers," underscoring the transformative potential of this innovation.
Research Report:Vernier microcombs for integrated optical atomic clocks
Related Links
Chalmers University of Technology
GPS Applications, Technology and Suppliers
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |