GPS News  
GPS NEWS
No GPS, no problem: Next-generation navigation
by Staff Writers
Riverside CA (SPX) Oct 24, 2016


Simulation results for an unmanned drone flying over downtown Los Angeles showing the true trajectory (red line), with GPS navigation only (yellow line), and GPS aided with cellular signals (blue line). Image courtesy Aspin Laboratory At UC Riverside. For a larger version of this image please go here.

A team of researchers at the University of California, Riverside has developed a highly reliable and accurate navigation system that exploits existing environmental signals such as cellular and Wi-Fi, rather than the Global Positioning System (GPS).

The technology can be used as a standalone alternative to GPS, or complement current GPS-based systems to enable highly reliable, consistent, and tamper-proof navigation. The technology could be used to develop navigation systems that meet the stringent requirements of fully autonomous vehicles, such as driverless cars and unmanned drones.

Led by Zak Kassas, assistant professor of electrical and computer engineering in UCR's Bourns College of Engineering, the team presented its research at the 2016 Institute of Navigation Global Navigation Satellite System Conference (ION GNSS+), in Portland, Ore., in September.

The two studies, "Signals of Opportunity Aided Inertial Navigation" and "Performance Characterization of Positioning in LTE Systems," both won best paper presentation awards.

Most navigation systems in cars and portable electronics use the space-based Global Navigation Satellite System (GNSS), which includes the U.S. system GPS, Russian system GLONASS, European system Galileo, and Chinese system Beidou. For precision technologies, such as aerospace and missiles, navigation systems typically combine GPS with a high-quality on-board Inertial Navigation System (INS), which delivers a high level of short-term accuracy but eventually drifts when it loses touch with external signals.

Despite advances in this technology, current GPS/INS systems will not meet the demands of future autonomous vehicles for several reasons: First, GPS signals alone are extremely weak and unusable in certain environments like deep canyons; second, GPS signals are susceptible to intentional and unintentional jamming and interference; and third, civilian GPS signals are unencrypted, unauthenticated, and specified in publicly available documents, making them spoofable (i.e., hackable).

Current trends in autonomous vehicle navigation systems therefore rely not only on GPS/INS, but a suite of other sensor-based technologies such as cameras, lasers, and sonar.

"By adding more and more sensors, researchers are throwing 'everything but the kitchen sink' to prepare autonomous vehicle navigation systems for the inevitable scenario that GPS signals become unavailable. We took a different approach, which is to exploit signals that are already out there in the environment," Kassas said.

Instead of adding more internal sensors, Kassas and his team in UCR's Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory have been developing autonomous vehicles that could tap into the hundreds of signals around us at any point in time, like cellular, radio, television, Wi-Fi, and other satellite signals.

In the research presented at the ION GNSS+ Conference, Kassas' team showcased ongoing research that exploits these existing communications signals, called "signals of opportunity (SOP)" for navigation.

The system can be used by itself, or, more likely, to supplement INS data in the event that GPS fails. The team's end-to-end research approach includes theoretical analysis of SOPs in the environment, building specialized software-defined radios (SDRs) that will extract relevant timing and positioning information from SOPs, developing practical navigation algorithms, and finally testing the system on ground vehicles and unmanned drones.

"Autonomous vehicles will inevitably result in a socio-cultural revolution. My team is addressing the challenges associated with realizing practical, cost-effective, and trustworthy autonomous vehicles. Our overarching goal is to get these vehicles to operate with no human-in-the loop for prolonged periods of time, performing missions such as search, rescue, surveillance, mapping, farming, firefighting, package delivery, and transportation," Kassas said.

Research reports "Signals of Opportunity Aided Inertial Navigation" and "Performance Characterization of Positioning in LTE Systems,"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
GPS Applications, Technology and Suppliers






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
GPS NEWS
Australia's coordinates out by more than 1.5 metres: scientist
Sydney (XNA) Oct 05, 2016
Australia has had to change its position on world maps four times in the past 50 years. The country happens to be located on one of the world's fastest-moving tectonic plates, travelling about 2.7 inches north each year. That's almost three times as fast as the plate on which the U.S. is positioned, which only travels around one inch per year. According to Dr Lucia Perez-Diaz from the Depa ... read more


GPS NEWS
Model predicts spread of harmful plant pathogen around the globe

Plants actively direct their seeds via wind or water towards suitable sites

EU sugar producers eye exports when quotas end next year

Small-scale agriculture threatens the rainforest

GPS NEWS
Sandia, Harvard team create first quantum computer bridge

Quantum computers: 10-fold boost in stability achieved

Infrared brings to light nanoscale molecular arrangement

Researchers develop DNA-based single-electron electronic devices

GPS NEWS
It's Electric! NASA Glenn Engineers Test Next Revolution Aircraft

Boeing Australia tapped for P-8A sustainment services

Textron's Scorpion jet completes first weapons exercise

Poland opens 'talks' on new military choppers after Airbus row

GPS NEWS
US judge 'strongly inclined' to back $15 bn VW settlement

Honda to build new China factory

Driverless taxi hits lorry in Singapore trial

Berlin tells Tesla: Stop ads with 'misleading' autopilot term

GPS NEWS
EU sets Belgium ultimatum to back Canada trade deal

EU's Tusk warns Canada trade deal 'could be our last'

Belgian region rejects EU ultimatum for Canada deal

Tycoon Packer 'deeply concerned' for staff held in China

GPS NEWS
Deforestation in Amazon going undetected by Brazilian monitors

'Goldilocks fires' can enhance biodiversity in Western forests

Urban warming slows tree growth, photosynthesis

Emissions from logging debris in Africa may be vastly under estimated

GPS NEWS
The future of radar - scientific benefits and potential of TerraSAR-X and TanDEM-X

FSU geologist explores minerals below Earth's surface

Airbus Defence and Space-built PeruSAT-1 delivers first images

Data improves hurricane forecasts, but uncertainties remain

GPS NEWS
Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink

A 'nano-golf course' to assemble precisely nanoparticules

NIST-made 'sun and rain' used to study nanoparticle release from polymers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.