GPS News  
GPS NEWS
Inferring urban travel patterns from cellphone data
by Staff Writers
Washington DC (SPX) Aug 31, 2016


Researchers from MIT and Ford Motor have developed a new computational system that uses cellphone location data to infer urban mobility patterns.

In making decisions about infrastructure development and resource allocation, city planners rely on models of how people move through their cities, on foot, in cars, and on public transportation. Those models are largely based on surveys of residents' travel habits.

But conducting surveys and analyzing their results is costly and time consuming: A city might go more than a decade between surveys. And even a broad survey will cover only a tiny fraction of a city's population.

In the latest issue of the Proceedings of the National Academy of Sciences, researchers from MIT and Ford Motor Company describe a new computational system that uses cellphone location data to infer urban mobility patterns. Applying the system to six weeks of data from residents of the Boston area, the researchers were able to quickly assemble the kind of model of urban mobility patterns that typically takes years to build.

The system holds the promise of not only more accurate and timely data about urban mobility but the ability to quickly determine whether particular attempts to address cities' transportation needs are working.

"In the U.S., every metropolitan area has an MPO, which is a metropolitan planning organization, and their main job is to use travel surveys to derive the travel demand model, which is their baseline for predicting and forecasting travel demand to build infrastructure," says Shan Jiang, a postdoc in the Human Mobility and Networks Lab in MIT's Department of Civil and Environmental Engineering and first author on the new paper. "So our method and model could be the next generation of tools for the planners to plan for the next generation of infrastructure."

To validate their new system, the researchers compared the model it generated to the model currently used by Boston's MPO. The two models accorded very well.

"The great advantage of our framework is that it learns mobility features from a large number of users, without having to ask them directly about their mobility choices," says Marta Gonzalez, an associate professor of civil and environmental engineering (CEE) at MIT and senior author on the paper. "Based on that, we create individual models to estimate complete daily trajectories of the vast majority of mobile-phone users. Likely, in time, we will see that this brings the comparative advantage of making urban transportation planning faster and smarter and even allows directly communicating recommendations to device users."

Joining Jiang and Gonzalez on the paper are Daniele Veneziano, a professor of CEE at MIT; Yingxiang Yang, a graduate student in CEE; Siddharth Gupta, a research assistant in the Human Mobility and Networks Lab, which Gonzalez leads; and Shounak Athavale, an information technology manager at Ford Motor's Palo Alto Research and Innovation Center.

Model building
The Boston MPO's practices are fairly typical of a major city's. Boston conducted one urban mobility survey in 1994 and another in 2010. Its current mobility model, however, still uses the data from 1994. That's because it's taken the intervening six years simply to sort through all the data collected in 2010. Only now has the work of organizing that data into a predictive model begun.

The 2010 survey asked each of 25,000 residents of the Boston area to keep a travel diary for a single day. From those diaries, combined with census data and information from traffic sensors, the MPO attempts to model the movements of 3.5 million residents of the greater Boston area.

While the MIT researchers had access to much more data - six weeks' worth from each of 1.92 million residents - it was less complete. Cellphone records report only the locations at which users place calls or access the Internet. The researchers had to discard 25 percent of their data because it was too scanty.

From the rest, however, their algorithm was able to infer patterns of activity that recurred over the course of the six-week period. To piece together a picture of a cellphone user's day, the algorithm makes a few assumptions. One is that the location from which a user departs in the morning and to which she returns at night is her home. Another is that the location of the longest recurring stays during weekday daytime hours indicates the user's workplace.

Finally, the algorithm assumes that the lengths of most people's workdays accord with national averages. For instance, if a given user makes phone calls from work only between the hours of 12 p.m. and 2 p.m., the system does not interpret that as evidence of a two-hour workday - unless that interpretation is corroborated by other data, such as regular calls from home at 11:30 a.m. and 2:30 p.m. The estimates of workday length are probabilistic, however; the model doesn't assume that people arrive at work at exactly the same time every morning.

Any locations other than work and home are treated alike. From the available data, the system builds a probabilistic mobility model for each user, breaking every day of the week into 10-minute increments. For each increment, the model indicates the likeliness of a location change, possible destinations, and amount of time likely to be spent at each of those destinations. The system then generalizes those probabilities across communities, on the basis of census data, and deduces cumulative traffic flows from the resulting probability map.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
GPS Applications, Technology and Suppliers






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
GPS NEWS
India to Provide Cost Incentives to Use Homemade Version of GPS
New Delhi (Sputnik) Aug 10, 2016
According to official sources, India's government is exploring several options, including reduced charges for air navigation services. The Indian government may soon announce incentives to airline operators for installing the locally developed Aided Geo Augmented Navigation system (GAGAN). The aviation ministry, the Directorate General of Civil Aviation (DGCA) and the Airports Authority of ... read more


GPS NEWS
Stormy outlook hits French wine output

Bonfires light up Baltic coast, with tech-savvy twist

Molecular signature shows plants are adapting to increasing CO2

Researchers image roots in the ground

GPS NEWS
New microchip demonstrates efficiency and scalable design

A nanoscale wireless communication system via plasmonic antennas

New theory could lead to new generation of energy friendly optoelectronics

X-ray optics on a chip

GPS NEWS
Lockheed Martin gets max $10B contract for Air Force C-130J production

Power of Pink Provides NASA with Pressure Pictures

Australia to study drift of MH370 debris

NASA-funded balloon mission begins fourth campaign

GPS NEWS
VW pressed by US judge and dealerships in "dieselgate"

Singapore trials driverless taxis in world first

Driverless taxi firm eyes operations in 10 cities by 2020

Bio-inspired tire design: Where the rubber meets the road

GPS NEWS
Canada PM Trudeau to mount charm offensive in China: officials

Apple faces huge Irish tax payout in EU case

Chinese tycoon to buy US aluminium maker for $2.33 bn

Iran interested in proposed Chinese-built canal in Nicaragua

GPS NEWS
Modelling water uptake in wood opens up new design framework

Europe's oldest known living inhabitant

Logged rainforests can be an 'ark' for mammals, extensive study shows

Logged forests are havens for endangered species in Southeast Asia

GPS NEWS
Stanford scientists combine satellite data and machine learning to map poverty

Van Allen probes catch rare glimpse of supercharged radiation belt

New map of world vegetation reveals substantial changes since 1980s

CYGNSS Undergoes Vibration Testing

GPS NEWS
Lehigh engineer discovers a high-speed nano-avalanche

Silicon nanoparticles trained to juggle light

Quantum dots with impermeable shell: A powerful tool for nanoengineering

Researchers resolve problem that has been holding back a tech revolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.